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Studies of the formation of fine structures on free surfaces in liquids, such as curva-
ture singularities or interface pinching, demand that the motion of the interface must
be computed very accurately. Boundary integral techniques are a popular choice in
such studies because they reduce the dimension of the problem by one. On the other
hand, the boundary integrals are singular, and their accurate evaluation can prove
quite challenging. In two-dimensional motion, the interface is just a curve. When
this curve is closed or periodic, the singularity in the integrand may be removed
and the trapezoidal rule may be applied with spectral accuracy. Unfortunately, the
nature of the singularity in the integrand for three-dimensional motion is much more
difficult to treat. In this paper, we present an accurate adaptive quadrature to com-
pute the motion of a vortex sheet in axi-symmetric flow. The technique is based on a
vector-potential formulation which offers some computational advantages over other
methods based on the Biot–Savart integral. Direct numerical computations show that
our technique is much more accurate and efficient than existing techniques. We apply
our technique to study the evolution of an initially spherical vortex sheet. We present
evidence of the formation of a 3/2 power singularity in the curvature of the vortex
sheet. c© 1998 Academic Press

Key Words:axi-symmetric vortex sheets; adaptive integration.

1. INTRODUCTION

Boundary integral techniques provide a popular approach to studying free-surface motion
in liquids, covering a wide range of phenomena. Some examples are the propagation of
waves in inviscid liquids [1] and the motion of drops in very viscous liquids [2]. One of the
major features of boundary integral techniques is that they provide an evolution equation
for the motion of the interface explicitly. Since there is no need to determine the flow field
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away from the interface, the dimension of the problem is reduced by one. On the other
hand, the boundary integrals are principal-value integrals and their accurate evaluation can
be very challenging. This is particularly true in studies of the formation of fine structures
on the interface, such as curvature singularities or interface pinching.

In two-dimensional motion there have been several successful studies of interfacial mo-
tion. In particular, spectrally accurate methods are available when the interface is closed (as
in rising bubbles [3]) or is periodic in open geometry (as in water waves [1] or Rayleigh–
Taylor instability [4]). First, the pole singularity in the principal-value integral may be
removed by the subtraction of a simple integral, and then the trapezoidal rule may be
applied with spectral accuracy to the resulting periodic integral [5, 6]. The high order of ac-
curacy proves very desirable in studies of fine features, such as the formation of a curvature
singularity in vortex sheet motion [7] or during the Rayleigh–Taylor instability [8].

The situation is very different for the computation of axi-symmetric flows. The principal-
value integrals involve complete elliptic integrals which contain logarithmic singularities.
The singularity in the integrand can be weakened, but cannot be removed completely as in
the two-dimensional case: some derivative of the integrand will remain singular. Further, the
integrand shows strong variations especially near the poles [9], which makes the design of an
accurate quadrature difficult. For example, a vortex ring method [10] with a correction term
to treat the principal value also finds difficulties at the pole: the order of the method is reduced
to O(h) near the poles whereh is the spacing between the rings. An improvement to this
method has been found recently [11] by an ingenious analytic approximation to the integrand
near the poles. The improved method is still onlyO(h3 logh). A different approach [9, 12]
is to insert more quadrature points through interpolation when performing the integration at
collocation points near the poles, but numerical instabilities appear in the vortex sheet near
the poles after a short time. This behavior illustrates a useful principle in designing methods
for vortex sheet motion: not only must the numerical errors from the boundary integrals be
small, but they should also be relatively smooth to avoid the onset of instabilities.

There have been attempts [13, 14] to study the formation of curvature singularities in axi-
symmetric vortex sheets. The numerical calculations were based on the vortex ring method
[10], and while evidence for the existence of the singularity was found, not enough resolution
was possible to identify the nature of the singularity. As we will show, it is necessary to
compute the boundary integral to an accuracy of about 10−20 to determine the precise form
of the singularity. This requirement is probably too severe even for methods of moderate
order. In this paper, we present efficient and accurate integration for axi-symmetric vortex
sheet computations based on high order adaptive Gauss–Kronrod and Clenshaw–Curtis
quadratures.

The conventional approach to stating a boundary integral method for vortex sheet motion
is in terms of the vorticity distribution along the sheet [15]. We introduce a different rep-
resentation based on a dipole distribution, because it is easier to weaken the singularity in
the principal-value integrals by the subtraction of a suitable analytic expression. In our first
series of tests, we show that singularity reduction in the integrands of the dipole distribution
provides a better formulation for the accurate numerical evaluation of the velocity of the
vortex sheet. We calculate the flow around a spherical vortex sheet held fixed in time by
three different methods. In Method A, we apply the six-point Gaussian quadrature to the
Biot–Savart integral. In Method B, we follow previous work [10] by using a point vortex
method with the axi-symmetric Van der Vooren correction. Although the numerical integra-
tion is of lower order, the explicit treatment of the singularity in the integrands in Method B
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leads to better accuracy. In Method C, we apply the six-point Gaussian quadrature to the
dipole representation after singularity reduction. This method proves the best of the three.
All three methods suffer from loss of accuracy near the poles.

To control accuracy, we apply adaptive numerical integration to the integrals of the
dipole distribution after singularity reduction. In one approach, we use Gauss–Kronrod
quadrature directly on the integrals in the standard adaptive way. In the other approach, we
note that the presence of the logarithmic singularity in the complete elliptic functions can be
treated by a specialized adaptive quadrature. We first approximate the two complete elliptic
integrals in the integrands by the sum of two parts, a regular part and a logarithmic part;
then we apply Gauss–Kronrod quadrature adaptively to the regular part and the modified
Clenshaw–Curtis quadrature adaptively to the logarithmic part. Our tests indicate that both
adaptive approaches are significantly better than the non-adaptive approaches. The adaptive
Clenshaw–Curtis method is the more efficient.

We apply the adaptive Clenshaw–Curtis method to the evolution of an initially spherical
vortex sheet up to the time just before the formation of a curvature singularity. We find
no evidence of numerical instabilities. Next, we follow the standard approach to detecting
curvature singularities in vortex sheets by fitting the Fourier spectrum to a form indicative
of the presence of a singularity with an algebraic power. We find that it is necessary to have
an accuracy of about 10−20 to determine the power of the singularity as 3/2.

The organization of the paper is as follows. In Section 2, we derive the equations of motion
for a full three-dimensional vortex sheet and its axi-symmetric version. We give both formu-
lations, the one based on the Biot–Savart law, and the other based on the dipole distribution.
We describe the numerical techniques in Section 3, and discuss and compare the perfor-
mance of the different methods in Section 4. Finally, we present the results of the calculation
of the motion of an axi-symmetric sheet using the adaptive Clenshaw–Curtis quadrature.

2. FORMULATIONS

In this section, we give the boundary integral equations for a three-dimensional vortex
sheet; then we obtain the special form for an axi-symmetric sheet. We follow the same
notation as in [15], but we derive the equations from a different point of view based on
representing the vortex sheet by a dipole distribution. Dipole distributions have already
been used to study the evolution of an interface between a liquid and gas [9], but there are
some minor differences when the interface is a vortex sheet in a homogeneous liquid.

Let S denote a closed vortex sheet, which divides the fluid region into two parts: an
outside regionD+ and an inside regionD−. The velocity and pressure fields are (u±, p±),
respectively. The Euler equations of motion are

∂u±
∂t

+ u± · ∇u± + ∇ p± = 0 in D±, (1)

∇ · u± = 0 in D±, (2)

∇ × u± = 0 in D±/S. (3)

Kinematic and dynamic considerations require the following conditions on the vortex sheet,

n · u+ = n · u− and p+ = p− on S, (4)
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wheren is the normal toSpointing intoD+. It is the jump in tangential components of the
velocity that characterizes the vortex sheet.

We introduce two surface coordinatesα andβ and express the location of the interface
asX(α, β, t). These coordinates will be defined by the requirement that the motion of the
sheet is “Lagrangian.” By that we mean a “particle” onS labeled byα andβ moves with
the velocity

∂X
∂t

= u ≡ 1

2
(u+ + u−) on S. (5)

Note that the normal component of the velocity of the sheet matches that of the two liquids
as required by (4).

Due to (2), (3), there exist potential functionsφ± such that

u± = ∇φ± in D±/S. (6)

We introduce a dipole distributionµ(α, β, t) on the sheet. According to potential theory
[16, 17], a dipole distribution generates a potential function

w(x) = − 1

4π

∫
S
µ(x′)n(x′) · ∇x′

(
1

|x − x′|
)

dx′ in D± (7)

with the properties

w(x) =
{

φ+ x in D+
φ− x in D−

(8)

andµ = φ+ − φ− on S. The potentialφ+ vanishes at infinity, which means there is no far
field flow. If a far field flow is present, it must be added separately. In our study, we assume
there is no far field flow.

Define

φ = 1

2
(φ+ + φ−) on S. (9)

Then from potential theory, we have

φ(x) = − 1

4π
P
∫

S
µ(x′)n(x′) · ∇x′

(
1

|x − x′|
)

dx′ on S. (10)

As a consequence, the motion of the sheet is given by

Xt (α, β, t) = ∇φ. (11)

The evolution equation forµ is obtained as follows. First we determine the rate of
change of the potential along the trajectory of a surface particle moving according to (5).
By differentiatingφ±(α, β, t) = φ±(X(α, β, t), t) with respect to time, keeping the surface
coordinatesα andβ fixed, we obtain

∂φ±
∂t

= ∂φ±
∂t

∣∣∣∣
x
+ u · ∇φ±. (12)
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The rate of change of the potential at a fixed point in space can be obtained by integrating
(1),

∂φ

∂t

∣∣∣∣
x

= −1

2
u · u − p + c, (13)

wherec is a constant. Upon substituting the result into (12), we obtain

∂φ±
∂t

=
(

u − 1

2
u±

)
· u± − p± + c±. (14)

By subtracting the rate of change of the potential on either side of the sheet, we find

∂µ

∂t
=
(

u − 1

2
u+

)
· u+ −

(
u − 1

2
u−

)
· u− + c+ − c−. (15)

The value of the definition of the velocity for the vortex sheet (5) now becomes clear since
(15) simplifies to

µ = µ|t=0 + (c+ − c−)t on S. (16)

Since a dipole that is constant onS induces only constant potentials inside and outside, the
contribution(c+ − c−)t has no dynamical significance, and we may assumec+ = c− = 0
without loss of generality. In other words, we may considerµ = µ(α, β) on S to be inde-
pendent of time and given by the initial conditions.

Next, we describe howu is calculated. We assume that our coordinate system has the
property thatXβ, Xα, andn form a right-hand system with

n = Xβ × Xα

|Xβ × Xα| . (17)

The Greek subscripts refer to differentiation with respect to the surface coordinates. We
take the gradient ofw as given by (7) and “integrate by parts” over the vortex sheet. Then
we take the average of the limiting values on either side of the sheet to obtain

u = − 1

4π
P
∫

S
(µ′

βX′
α − µ′

αX′
β) ×

(
X − X′

|X − X′|3
)

dα′ dβ ′. (18)

We have introduced the notationµ′ = µ(α′, β ′), etc., for convenience. This equation is the
same as that obtained from the Biot–Savart law [15].

We obtain a different expression foru by differentiatingφ (see (11)). In particular,

u = ∂φ

∂n
n + φα

n × Xβ

|Xα × Xβ | + φβ

Xα × n
|Xα × Xβ | . (19)

The simplest way to determine∂φ/∂n is through the associated vector potentialA, which
has the following integral representation [17],

A(x) = 1

4π
P
∫

S
µ(x′)n(x′) × ∇x′

(
1

|x − x′|
)

dx′ on S. (20)
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Specifically,

∂φ

∂n
= n · (∇ × A)

= [(A · Xα)β − (A · Xβ)α]
1

|Xα × Xβ | . (21)

Notice that onceφ andA have been computed through (10) and (20), we differentiate them
with respect to the surface coordinates to obtain the velocity components in (19). This then
provides an alternate approach to computing the motion of the vortex sheet.

The advantage of using the surface integrals (10) and (19) is that the identities

− 1

4π
P
∫

n(x′) · ∇x′

(
1

|x − x′|
)

dx′ = 1

2
, (22)

1

4π
P
∫

n(x′) × ∇x′

(
1

|x − x′|
)

dx′ = 0 (23)

may be used to reduce the singularities in their integrands [9]. For example,A can be
rewritten as

A(x) = 1

4π
P
∫

(µ(x′) − µ(x))n(x′) × ∇x′

(
1

|x − x′|
)

dx′ on S. (24)

We will show specifically in the case of axi-symmetric flow how the singularities in the
integrands have been reduced.

For an axi-symmetric vortex sheet, we may represent the sheet location as

X = r (α, t)er + z(α, t)ez (25)

using the cylindrical coordinates (r, z). The motion of the sheet is assumed independent of
the azimuthal angleβ = θ . As noted before [15] for motion without swirl, the Biot–Savart
integral (18) becomes

rt = 1

4πr
P
∫

µ′
α(z′ − z)B0(α, α′)[F(k) + B1(α, α′)E(k)] dα′, (26)

zt = 1

4π
P
∫

µ′
α B0(α, α′)[F(k) + B2(α, α′)E(k)] dα′, (27)

whereF(k) andE(k) are the complete elliptic integrals

F(k) =
∫ π/2

0
(1 − k2 cos2(β))−1/2 dβ, E(k) =

∫ π/2

0
(1 − k2 cos2(β))1/2 dβ (28)

of the first and second kind respectively, with

k2 = 4rr ′

(z − z′)2 + (r + r ′)2
. (29)

The other quantities are

B0(α, α′) = 2

((z − z′)2 + (r + r ′)2)1/2
, (30)
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B1(α, α′) = − (z′ − z)2 + r ′2 + r 2

(z − z′)2 + (r − r ′)2
, (31)

B2(α, α′) = r ′2 − r 2 − (z′ − z)2

(z − z′)2 + (r − r ′)2
. (32)

Now our notation reflects the dependency on only one surface coordinate,r ′ = r (α′), etc.
In the alternate formulation, (19) becomes

rt =
(

φαrα − ψα

r
zα

)
1

s2
α

, (33)

zt =
(

φαzα + ψα

r
rα

)
1

s2
α

, (34)

wheres2
α = r 2

α + z2
α andψ = r A · eθ is a pseudo-streamfunction. Note thatA has only one

non-vanishing component. By using (22), (23), we may express the potential function (10)
as

φ = 1

4π
P
∫

(µ′ − µ)B0(α, α′)[z′
α F(k) + C1(α, α′)E(k)] dα′ + 1

2
µ, (35)

and the pseudo-streamfunction (obtained from (20)) as

ψ = 1

4π
P
∫

(µ′ − µ)B0(α, α′){[r ′
αr ′ − z′

α(z − z′)]F(k) + C2(α, α′)E(k)} dα′, (36)

where

C1 = − (z − z′)[z′
α(z − z′) − 2r ′r ′

α] + (r 2 − r ′2)z′
α

(z − z′)2 + (r − r ′)2
(37)

C2 = (z − z′)([z′
α(z − z′) − r ′

αr ′](z − z′) + z′
α(r 2 + r ′2)) + (r 2 − r ′2)r ′

αr ′

(z − z′)2 + (r − r ′)2
. (38)

In order to design good numerical methods for the integrals, we must understand the
nature of the singularities in the integrands. First, we consider the asymptotic behavior of
the integrands in (26), (27) when the integration variableα′ is close to the field point atα.
For r ≡ r (α) 6= 0, the leading order terms of the integrands are

− 2r µαzα

s2
α(α′ − α)

and
2µαrα

s2
α(α′ − α)

, (39)

respectively. Clearly, the integrands have pole singularities 1/(α′ − α) except right on the
axis.

In the other formulation, the integrands in (35), (36) exhibit the following asymptotic
behavior,

−zαµα

r
(α′ − α) ln|α − α′| and −2µαr, (40)

respectively. Therefore, these integrands are continuous even though they have discon-
tinuous derivatives. This information will prove very valuable in the design of effective
numerical methods.
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3. NUMERICAL METHODS

We describe the numerical methods to evaluate the velocity of the vortex sheet in three
parts: evaluation of the complete elliptic integrals of the first and second kind; adaptive
numerical quadratures; and their specific application to the vortex sheet.

3.1. Evaluation of the Elliptic Integrals

In [18, p. 297], there are recursive formulae for the evaluation of bothF(k) andE(k),

F = π

2
(1 + G1)(1 + G2)(1 + G3) · · · , E = F

(
1 − k2

2
H

)
, (41)

where

H = 1 + G1

2

(
1 + G2

2

(
1 + G3

2
(· · ·) · · ·

)
· · ·
)

, (42)

andGi is given by the recursion

G0 = k, Gi =
1 −

√
1 − G2

i −1

1 +
√

1 − G2
i −1

. (43)

This method is very robust computationally. However, the number of iterations for a given
tolerance depends onk. In general, more iterations are needed whenk is close to 1.

The other widely used technique for the computation ofE and F is a polynomial ap-
proximation. From [18, p. 297] and [19, p. 170], we know

F = ln(4) +
m∑

j =1

aj ζ
j +
(

1

2
+

m∑
j =1

bj ζ
j

)
ln

(
1

ζ

)
+ error1(k), (44)

and

E = 1 +
m∑

j =1

cj ζ
j +
(

m∑
j =1

dj ζ
j

)
ln

(
1

ζ

)
+ error2(k), (45)

whereζ = 1 − k2. The polynomial coefficients are obtained via least-square fits. The sizes
of the two error terms depend onm. For example, to guarantee errors of less than 10−8 we
needm= 4 [19, p. 170; 20, p. 591], a very common choice. To guarantee errors of less than
10−21, we needm= 15, which is still not excessive.

3.2. Adaptive Quadratures

Gaussian quadrature is one of the most popular methods for numerical integration be-
cause of its high accuracy. However, the standard Gaussian quadrature lacks the nature of
progressiveness; i.e., a Gaussian rule cannot be generated by adding new points to another
Gaussian rule, and it has to be reconstructed. This is not suitable for adaptive strategy.

In [21], Kronrod shows that ann-point Gaussian rule may be augmented by a further set
of n + 1 abscissae to yield a rule which integrates exactly a polynomial of degree 3n + 1
for n even and 3n + 2 for n odd. In the extended rule, there are extran + 1 weights and
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abscissae. While the original Gaussian abscissae remain unchanged, their weights must be
reset. Patterson [22] extends this technique by considering the augmentation of ann-point
formula byp points. There are tables containing the standard abscissae and weights in [21].

In this study, we use a 7- to 15-point Gauss–Kronrod quadrature. We bisect the integration
intervals and estimate the error of the numerical integration over each interval by measuring
the difference between the 7-point Gauss quadrature and the 15-point Kronrod rule. A
globally adaptive strategy is to bisect the interval with the largest error estimate until the
error is less than a prescribed tolerance. We used the freely available software package
Quadpack [23] which implements this strategy.

Clenshaw–Curtis quadrature [24] is based on the expansion of the integrand as a series
of Chebyshev polynomials. The method is naturally adaptive since it adjusts the number of
terms to reach a specified level of accuracy. For integrands with weight functions which cause
a slow rate of convergence, Piessens and Brander [25] developed a modified Clenshaw–
Curtis quadrature through the computation of modified Chebyshev moments. In this study,
we are interested in the computation of the integral with the following weight [23],∫ 1

0
f (α′) ln(α′) dα′. (46)

This weight function is one of the choices available in Quadpack which contains the software
necessary to perform the modified Clenshaw–Curtis quadrature.

3.3. Application to the Dipole Distribution

A convenient choice for the surface coordinate is to use the angle subtended at the center
of the enclosed region by the axis of symmetry and the vector to a field point on the initial
location of the surface. For the studies reported in this paper, the initial surface is a sphere
andα is the polar angle measured from the bottom pole. Thusα = 0 will mark the bottom
pole, whileα = π will mark its top.

We approximate the closed surface by a set of points along the contour in the (r, z) merid-
ional plane(ri , zi ) ≡ (r (αi ), z(αi )) for i = 1, . . . , N, whereαi = i π/(N − 1). Equations
(33), (34) are then enforced at these points. This first requires the computation ofφi and
ψi . Although the integrands in (35), (36) are continuous whenα = α′, their derivatives are
not. So we split the integrals into two parts: one integrated from 0 toαi , and the other one
from αi to π . Then we apply the adaptive Gauss–Kronrod quadrature to each of the two
integrals. Because the Gauss–Kronrod quadrature is a open quadrature, we do not need to
evaluate the integrands at the integration limits. In particular, we do not need to worry about
the indeterminate form of the integrand whenα = α′.

To evaluate the integrands, we also need values for the elliptic integrals and derivatives of
r andz. The elliptic integrals are determined through the recursion (41)–(43). Depending on
the accuracy we require for the integration, we set a tolerance for the recursion for the elliptic
integrals. To determine approximations for the derivatives ofr andz, we expand them in a
truncated Fourier cosine series: The Fourier coefficients can be determined through the fast
Fourier transform inO(N ln N) operations using the values ofr andz at the collocation
points. We then differentiate the series analytically and use the fast Fourier transform with
the modified coefficients to obtain the derivatives at the collocation points. Similarly we can
approximate the derivatives ofφ andψ which then give us the velocities of the collocation
points on the sheet. To obtain values of quantities at points other than the collocation points,
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we use quintic splines. Because of the symmetries in a closed, axi-symmetric surface, the
endpoint conditions for the splines are easily specified. We call this procedure Method I.

In Method II, we replace the elliptic integral of the first and second kind by the approxi-
mations (44), (45). The two integrals (35), (36) then take the form∫ π

0
f (α, α′) dα′ +

∫ α

0
g1(α, α′) ln(α − α′) dα′ +

∫ π

α

g2(α, α′) ln(α − α′) dα′, (47)

where f, g1, andg2 are smooth functions ofα andα′. We use the Gauss–Kronrod quadrature
on the first integral in (47), and the modified Clenshaw-Curtis quadrature on the second
and third integrals in (47), respectively. As in Method I, derivatives are obtained through
the use of a Fourier cosine series, and interpolation is conducted with quintic splines.

Once the velocity components have been determined by Method I or II, we advance the
location of the vortex sheet by applying a fourth-order Adams–Moulton predictor–corrector
on (33), (34). Starting values for the predictor–corrector are computed by a standard fourth-
order Runge–Kutta method.

4. NUMERICAL TESTS OF METHODS

Our first series of tests are performed without using adaptive quadrature. This provides
us with data by which we can compare the effectiveness of adaptive quadrature. What we
do explore in these tests is whether different forms for the integrals lead to better numerical
evaluation. At issue is the treatment of the singular nature of the integrands.

In Method A, we apply the six-point Gaussian quadrature in each subinterval(αi , αi +1)

of the Biot–Savart integrals (26), (27). This may be viewed as a reasonably accurate method
applied in a straightforward way without consideration of the singular nature of the inte-
grand. In Method B, we use the point vortex method, as implemented in [10] with the
axi-symmetric Van der Vooren correction. This method results from expressing the inte-
grand as a singular part, treated analytically, and a remainder, treated numerically by the
midpoint rule. In Method C, we apply the six-point Gaussian quadrature in each subinterval
(αi , αi +1) of the integrals (35, 36). In all three cases, we use a Fourier series to determine
derivatives, and interpolation is performed through the use of quintic splines. The two
elliptic integrals are computed through the recursive formulae (41)–(43).

We use the instantaneous velocity field of a uniform flow past a sphere as a test calculation.
The parameterization of the surface of the sphere and the dipole distribution is

r (α) = sin(α) z(α) = − cos(α) µ(α) = cos(α), (48)

whereα ∈ [0, π ]. The velocities of the vortex sheet are

rt = sin(2α)

4
zt = −

(
5

12
+ 1

4
cos(2α)

)
. (49)

We measure the error as the magnitude of the difference between the exact velocity (49)
and the numerically calculated one. In Fig. 1, we plot the errors as functions ofα for the
three different methods whenN = 65. Even though Method A uses a much higher order
quadrature, its errors are about a factor 100 worse than Method B. Clearly, the effort to
capture the singular nature of the integrand has paid off. The next step then would be
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FIG. 1. Errors as functions ofα for three non-adaptive methods. Dotted curve: Method A; dashed curve:
Method B; solid curve: Method C.

to improve the accuracy of the integration by using a high order Gaussian quadrature.
Unfortunately, the cancellation function used to remove the singularity in the integrand is
quite complicated and certainly increases the cost of the numerical integration. On the other
hand, reducing the singularity in the integrals of the dipole distribution as in Method C is
very easy and incurs negligible cost. Method C gives much better results than Method B.
In summary, it is important to treat the singular nature of the integrands as explicitly as
possible if high order numerical quadrature is to be used to gain high accuracy, and the
dipole distribution offers a substantial advantage in that regard.

All three methods lose accuracy whenα is near either pole. The cause of the difficulty is
the particular behavior of the integrand for a field point near the axis of symmetry [1, 11].
The error profile has a boundary layer inside of which the error only decreases linearly
with the spacing between the collocation points [14]. We confirm this behavior in Fig. 2,
which shows the variation of the maximum error (which occurs at or near the poles) with
the number of collocation points. The decrease is only linear. By linear extrapolation, the
error will be about 10−7 and 10−10 with N = 220 for Methods B and C, respectively. The
cost is prohibitive to achieve the levels of accuracy required to study singularity formation
on vortex sheets.

There is an interesting feature of the error in Method C, namely, the appearance of a
sawtooth pattern. The error profiles in the potentialφ and the streamfunctionψ are smooth
except at the poles, where the integrands are free of any singularities and Gaussian quadrature
produces errors that are substantially reduced. The jump in error at the poles has an important
consequence on the error in the velocities, which are obtained through differentiation of
φ andψ . Since numerical differentiation through a truncated Fourier series of the exactφ

andψ produces the exact result, the error in the velocities is just the derivative of the errors
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FIG. 2. Log-log plot of the maximum error of each method as a function ofN. (x) Method A; (o) Method B;
(∗) Method C.

in φ andψ . Using numerical differentiation through a truncated Fourier series on a jump
discontinuity will produce the type of oscillations seen in Method C. Although the errors
are quite small, the presence of oscillations may lead to instabilities in a time-dependent
calculation.

At this point, the obvious way forward is to use adaptive quadrature, hence Methods I and
II. We apply Methods I and II to the same test case as above. For the results reported here, we
make sure that the errors in the computation of the elliptic integrals are less thanεE = 10−14.
For the adaptive Gauss–Kronrod quadrature (Method A), we use the recursive formulae
(41)–(43) until the difference in the iterates is less thanεE. For the adaptive Clenshaw–
Curtis quadrature (Method B), we find thatm= 8 ensures the polynomial approximations
to the elliptic functions are accurate to at leastεE. Also, we set a tolerance requirement
εI for the calculation of the various integrals. This tolerance is simply passed through a
subroutine call to the software package Quadpack. Figure 3 presents the errors of the two
adaptive methods as a function ofα whenN = 65 andεI = 10−12. In contrast to the non-
adaptive methods, the errors are nearly uniform for allα. The errors are very close to the
specified tolerance for the calculation of the integrals. Don’t forget thatφ andψ must be
differentiated numerically to determine the velocities on the vortex sheet, and there will be
some error incurred as a result.

In order to compare the cost between these two methods, we count the number of integrand
evaluations for each method, which is the dominant cost in computing the integrals. In
Fig. 4, we plot the average number of integrand evaluations per collocation point as a
function of the error. We show the results for bothN = 65 andN = 129. There are several
points that these results illustrate. First, consistent with the results of the previous test, it
requires many quadrature points to obtain even moderate accuracy. By using an adaptive
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FIG. 3. Errors as functions ofα for the two adaptive methods. Solid curve: Method I; dashed curve: Method II.

FIG. 4. Log-log plot of the average number of integrands evaluation per collocation point as functions of the
errors. (x) Method I withN = 65; (∗) Method I with N = 129; (o) Method II withN = 65; (+) Method II with
N = 129.



          

62 NIE AND BAKER

quadrature we insert the quadrature points through interpolation just where they are needed.
Without adaption, we would have to introduce many more collocation points, driving up the
cost of numerical integration exorbitantly. Note furthermore that the number of integrand
evaluations is relatively insensitive to the number of collocation points. This means that
the errors in usingN = 65 andN = 129 points to represent the interface are much smaller
than the errors caused by the numerical integration. In other words, there is no need to have
more collocation points. Finally, we note that Method II is more efficient than Method I.
It was unclear to us prior to our testing which method would be more efficient. It seems
that the use of a special quadrature to treat the logarithmic part of the integrand is well
worth the effort in separating the integrand into two parts. Once again, explicit treatment
of singularities and derivative singularities in the integrand pays off.

5. EVOLUTION OF THE VORTEX SHEET

We follow previous work [13, 14] in using (48) as the initial condition. This initial condi-
tion corresponds to a uniform potential flow past a solid sphere which is instantaneously dis-
solved att = 0. The vortex sheet at the boundary of the sphere is then allowed toevolve freely.

Since vortex sheet motion is ill-posed, it is necessary to control the growth of round-
off errors to avoid rapid contamination of the profile long before singularity formation. In
studies of two-dimensional motion of vortex sheets, a Fourier filter is frequently used [26]:
the reliability of the filter has been checked with arbitrary precision calculations [27]. At
each time step, we calculate the Fourier spectrum of the location of the vortex sheet and set
all amplitudes below a filter levelεF to zero.

In Fig. 5, the profiles of the axi-symmetric vortex sheet are shown at four different times
with the last time very close to the time of formation of a curvature singularity. The results
are obtained by Method II usingεF = εI = 10−12, N = 257, and the time step1t = 0.001.
We establish the accuracy in our results by a resolution study. First, we consider the influence
of the number of collocation pointsN which represent the interface. We treatN = 257 as
“exact” and use the maximal difference in the sheet location between this “exact” solution
and other smallerN as an estimate of the error. We plot the error forN = 9, 17, 33, 65, 129
in Fig. 6. Here, the time step is1t = 0.001. There are three major sources of error due to
the spatial discretization: there is anO(N−6) error caused by the use of quintic splines for
interpolation; there is anO(exp(−cN)) error in determining the derivatives ofφ andψ by
their Fourier series (c is some constant); and there is an error produced by the evaluation of
the integrals. In general, if the errors in evaluating the integrals are small enough compared
with the other two errors, the dominant error should beO(N−6). Specifically, the error
should decrease by a factor of 64 wheneverN is doubled. This is evident in Fig. 6. The
errors uniformly decrease by a factor close to 64 as the number of collocation points is
increased fromN = 9 to N = 65. ForN = 65 andN = 129, the errors are initially limited
by the choicesεI = εF = 10−12, but as the errors become larger than 10−12, the accuracy
for N = 129 is better than forN = 65. Despite appearances, the curves are not crossing, but
merely touch one another.

Next we consider the errors caused by the temporal discretization. Similar to the spatial
resolution study, we take the results for1t = 0.00025 as “exact” and use the maximal
difference in the sheet location with the results for larger1t as estimates of the errors. Here,
we pick N = 129. Since the Adams–Moulton predictor–corrector method has an error of
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FIG. 5. Profiles of the vortex sheet at different times.

FIG. 6. The maximal magnitude of the difference between the solution forN = 257 and smallerN as functions
of time.
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FIG. 7. The maximal magnitude of the difference between the solution for1t = 0.00025 and for larger1t
as functions of time.

O((1t)4), we should obtain an improvement in accuracy of a factor of 16 whenever1t is
halved. In Fig. 7, the errors are plotted as functions of time for various1t .

Except at very early times, the errors decrease uniformly with a factor of about 16 as1t
decreases to 0.0025. The apparent crossing of the curves for1t = 0.04 and1t = 0.02 is
illusory: the curves merely touch. For smaller values of1t , the errors become smaller than
the effects of the spectral filter(εF = 10−12), and no further improvement is possible without
changing the various tolerance requirements and the filter level. Consequently,1t = 0.001
gives the best accuracy for our choice of numerical parameters. Most important is the fact
that no smoothing other than the spectral filter to control round-off errors is needed for
numerical stability. Highly accurate evaluations of the integrals give numerically stable
methods, an observation noted in two-dimensional motion [28, 29].

We turn now to a comparison of the performances of Method I and Method II. From the
resolution study, we find thatN = 129 and1t = 0.001 gives levels of accuracy close to
εI = 10−12, so we choose thisN and1t for the comparison of Method I and Method II. We
compute solutions for both methods with three different choices ofεI = 10−8, 10−10, 10−12

(εI = εF ). In Fig. 8, we show the maximal difference in the sheet location of the two
solutions. As seen in the plot, the differences are comparable with the size ofεI at early
times and increase slightly as time advances. The general tendency of the curves is similar
to those shown in the resolution study for Method II. We conclude that the two methods
are comparable in terms of achieving accuracy. However, Method II is superior in terms of
efficiency. This is evident in Table 1, where the computing time for both methods is listed
for different εI . Roughly speaking, Method II is about four times faster than Method I.
The average number of function evaluations per collocation point rises by about a factor
of five for both methods, with Method II remaining about a factor of four less throughout



               

ADAPTIVE QUADRATURE FOR VORTEX SHEETS 65

FIG. 8. The maximal magnitude of the difference between the solutions computed by Method I and Method
II with different choices ofεI : dotted curve:εa = 10−8; dashed curve:εa = 10−10; solid curve:εa = 10−12.

the evolution. Even so, both methods are very effective considering the accuracy they
achieve.

We conclude this section by providing some evidence of the formation of a curvature
singularity in the vortex sheet. In Fig. 9 we show profiles of the mean curvature

rαzαα − zαrαα

s3/2
α

+ zα

rsα

(50)

at times close to the formation of a curvature singularity. Note that the curvature changes
rapidly near where the singularity forms, jumping between a high spike and a low dip. This
jump grows in magnitude as the singularity forms even though the location of the sheet
(see Fig. 5) shows little evidence of the singularity. This behavior is quite typical of that
seen in singularity formation in two dimensional motion of vortex sheets [7]. It is also the
reason that the solutions gradually lose their accuracy as time approaches the singularity
time, as illustrated in Fig. 7. Depending on the number of collocation points, there is a limit
to how close to the singularity time the calculation can approach before the code terminates.
The appearance of oscillations in the curvature att = 1.08 and 1.095 is also indicative of
insufficient collocation points to resolve the curvature adequately at these times.

TABLE 1

Running Time on SGI Indigo2 Impact 10000

εI : 10−8 10−10 10−12

Method I (min): 73 115 160
Method II (min): 19 26 35
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FIG. 9. Profiles of the mean curvature att = 1 + i × 0.02(i = 1, 4) andt = 1.095.

The standard approach used to study the details of singularity formation in two-dimen-
sional vortex sheets is based on fitting the Fourier spectrum of the sheet location to a special
form. If branch point singularities are present in the complexα-plane of form

r (α) ≈ aei φ(α − θ + i δ)ν+i λ + ae−i φ(α + θ + i δ)ν−i λ, (51)

then the Fourier coefficients ofr, r̂ k say, take the form

r̂k ≈ a

kν+1
exp(sin(kθ + λ ln k + φ) (52)

for k À 0. While this is not the place to provide a detailed derivation or justification for
these theoretical results, a few words of explanation are in order. The two singularities
are placed symmetrical aboutα = 0 with the appropriate form to ensure thatr is an even
function whenα is real. Because the singularities in (51) are below the real axis ofα, they
affect only the positive part(k > 0) of the Fourier spectrum. There will be another pair
of singularities above the real axis to ensure thatr is real on the real axis, and this pair
will affect the negative part of the spectrum. The parametersa, φ, θ, δ, ν, andλ can be
functions of time. In particular, ifδ vanishes in time then the singularities reach the real
axis and become physically relevant. The objective of a form-fit to the spectrum then is
to identify the presence of such singularities in the complex plane and to verify that they
approach the real axis. More details are available in [8, 30] for the two-dimensional case.

Since (52) is an asymptotic form, the commonly accepted procedure [7, 8, 13, 30] for
fitting the numerically calculated spectrum is to take six sequential Fourier coefficients
and determine local values for the parameters in (52). The next six Fourier coefficient
are then used to get new values of the parameters, and the parameters are then plotted as



                

ADAPTIVE QUADRATURE FOR VORTEX SHEETS 67

FIG. 10. Parameters in the form-fit of the Fourier spectrum att = 1.025: dashed curve:ε f = 10−12; dotted
curve:ε f = 10−16; solid curve:ε f = 10−20.

functions of the localk values. Ask increases, the parameters in (52) should settle to constant
values.

We show the results of the form-fit in Fig. 10 for three different levels ofεI at time
t = 1.025. To obtain the results withεI = εF = 10−16, 10−20, we were forced to use quadru-
ple (128 bits) precision. Further, even interpolation with quintic splines proved too inaccu-
rate, so we switched to using a truncated Fourier series for interpolation, thus removing the
source of theO(h6) errors in the numerical integrations. The additional cost for spectral
interpolation is small compared to the cost of the numerical integration and is also partly
offset by a reduced number of function evaluations per collocation point.

The pattern in the results may be understood as follows. DecreasingεI improves accuracy,
while decreasingεF allows us to see much more of the Fourier spectrum. ForεI = 10−12, the
curves of the parameters in the form-fit do not approach constants except forθ and perhaps
δ, the two parameters that determine the location of the singularity in theα-complex plane.
To determine the power of the singularity, it is necessary to use much smaller values of
εI . The parametersν andλ show a clear approach to values consistent with the theoretical
predictionν = 1.5 andλ = 0 whenεI = 10−20. We would not be able to confirm theoretical
predictions if we did not use such a small value ofεI . Note that for larger values ofk, the
form-fits deteriorate because of truncation errors in the spectrum and the influence of the
filter. This contamination is delayed for the smaller values ofεI andεF .
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Now that we have adequate accuracy to study the presence of singularities in theα-
complex plane, we can study the nature of their origin and how they approach the real axis.
Details will be presented in [31].

6. CONCLUSIONS

Many quadrature points are needed to evaluate boundary integrals accurately for the axi-
symmetric motion of a vortex sheet. If a fixed quadrature rule is used, this also requires many
collocation points, driving the cost to prohibitive levels. By using adaptive quadratures, the
number of quadrature points can be made independent of the number of collocation points,
leading to more efficient techniques for the numerical study of vortex sheet motion. In
particular, we can ensure sufficient accuracy to locate and confirm the nature of singularities
in theα-complex plane. These singularities, when they reach the realα axis, are the cause
of curvature singularities in the vortex sheet.

We anticipate similar results for boundary integral methods to track free surface motion
in axi-symmetric geometry.
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