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Studies of the formation of fine structures on free surfaces in liquids, such as curva-
ture singularities or interface pinching, demand that the motion of the interface must
be computed very accurately. Boundary integral techniques are a popular choice in
such studies because they reduce the dimension of the problem by one. On the other
hand, the boundary integrals are singular, and their accurate evaluation can prove
quite challenging. In two-dimensional motion, the interface is just a curve. When
this curve is closed or periodic, the singularity in the integrand may be removed
and the trapezoidal rule may be applied with spectral accuracy. Unfortunately, the
nature of the singularity in the integrand for three-dimensional motion is much more
difficult to treat. In this paper, we present an accurate adaptive quadrature to com-
pute the motion of a vortex sheet in axi-symmetric flow. The technique is based on a
vector-potential formulation which offers some computational advantages over other
methods based on the Biot—Savart integral. Direct numerical computations show that
our technique is much more accurate and efficient than existing techniques. We apply
our technigue to study the evolution of an initially spherical vortex sheet. We present
evidence of the formation of a 3/2 power singularity in the curvature of the vortex
sheet. (1998 Academic Press
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1. INTRODUCTION

Boundary integral techniques provide a popular approach to studying free-surface m
in liquids, covering a wide range of phenomena. Some examples are the propagati
waves in inviscid liquids [1] and the motion of drops in very viscous liquids [2]. One of t
major features of boundary integral techniques is that they provide an evolution equ
for the motion of the interface explicitly. Since there is no need to determine the flow f
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away from the interface, the dimension of the problem is reduced by one. On the ot
hand, the boundary integrals are principal-value integrals and their accurate evaluatior
be very challenging. This is particularly true in studies of the formation of fine structur
on the interface, such as curvature singularities or interface pinching.

In two-dimensional motion there have been several successful studies of interfacial
tion. In particular, spectrally accurate methods are available when the interface is close
in rising bubbles [3]) or is periodic in open geometry (as in water waves [1] or Rayleigl
Taylor instability [4]). First, the pole singularity in the principal-value integral may b
removed by the subtraction of a simple integral, and then the trapezoidal rule may
applied with spectral accuracy to the resulting periodic integral [5, 6]. The high order of :
curacy proves very desirable in studies of fine features, such as the formation of a curve
singularity in vortex sheet motion [7] or during the Rayleigh—Taylor instability [8].

The situation is very different for the computation of axi-symmetric flows. The principa
value integrals involve complete elliptic integrals which contain logarithmic singularitie
The singularity in the integrand can be weakened, but cannot be removed completely :
the two-dimensional case: some derivative of the integrand will remain singular. Further,
integrand shows strong variations especially near the poles [9], which makes the design
accurate quadrature difficult. For example, a vortex ring method [10] with a correction te
totreatthe principal value also finds difficulties at the pole: the order of the method is redu
to O(h) near the poles whefteis the spacing between the rings. An improvement to thi:
method has been found recently [11] by aningenious analytic approximation to the integr
near the poles. The improved method is still o@lgh® log h). A different approach [9, 12]
is to insert more quadrature points through interpolation when performing the integratiol
collocation points near the poles, but numerical instabilities appear in the vortex sheet |
the poles after a short time. This behavior illustrates a useful principle in designing meth
for vortex sheet motion: not only must the numerical errors from the boundary integrals
small, but they should also be relatively smooth to avoid the onset of instabilities.

There have been attempts [13, 14] to study the formation of curvature singularities in ¢
symmetric vortex sheets. The numerical calculations were based on the vortex ring me
[10], and while evidence for the existence of the singularity was found, not enough resolu
was possible to identify the nature of the singularity. As we will show, it is necessary
compute the boundary integral to an accuracy of about’id determine the precise form
of the singularity. This requirement is probably too severe even for methods of model
order. In this paper, we present efficient and accurate integration for axi-symmetric vo
sheet computations based on high order adaptive Gauss—Kronrod and Clenshaw—C
quadratures.

The conventional approach to stating a boundary integral method for vortex sheet mo
is in terms of the vorticity distribution along the sheet [15]. We introduce a different re
resentation based on a dipole distribution, because it is easier to weaken the singulari
the principal-value integrals by the subtraction of a suitable analytic expression. In our f
series of tests, we show that singularity reduction in the integrands of the dipole distribut
provides a better formulation for the accurate numerical evaluation of the velocity of t
vortex sheet. We calculate the flow around a spherical vortex sheet held fixed in time
three different methods. In Method A, we apply the six-point Gaussian quadrature to
Biot—Savart integral. In Method B, we follow previous work [10] by using a point vorte:
method with the axi-symmetric Van der Vooren correction. Although the numerical integl
tion is of lower order, the explicit treatment of the singularity in the integrands in Method
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leads to better accuracy. In Method C, we apply the six-point Gaussian quadrature ti
dipole representation after singularity reduction. This method proves the best of the tt
All three methods suffer from loss of accuracy near the poles.

To control accuracy, we apply adaptive numerical integration to the integrals of
dipole distribution after singularity reduction. In one approach, we use Gauss—Kror
guadrature directly on the integrals in the standard adaptive way. In the other approac!
note that the presence of the logarithmic singularity in the complete elliptic functions ca
treated by a specialized adaptive quadrature. We first approximate the two complete el
integrals in the integrands by the sum of two parts, a regular part and a logarithmic |
then we apply Gauss—Kronrod quadrature adaptively to the regular part and the moc
Clenshaw—Curtis quadrature adaptively to the logarithmic part. Our tests indicate that
adaptive approaches are significantly better than the non-adaptive approaches. The ac
Clenshaw—Curtis method is the more efficient.

We apply the adaptive Clenshaw—Curtis method to the evolution of an initially spher
vortex sheet up to the time just before the formation of a curvature singularity. We 1
no evidence of numerical instabilities. Next, we follow the standard approach to detec
curvature singularities in vortex sheets by fitting the Fourier spectrum to a form indica
of the presence of a singularity with an algebraic power. We find that it is necessary to |
an accuracy of about 18° to determine the power of the singularity 5623

The organization of the paper is as follows. In Section 2, we derive the equations of mc
for a full three-dimensional vortex sheet and its axi-symmetric version. We give both fort
lations, the one based on the Biot—Savart law, and the other based on the dipole distrib
We describe the numerical techniques in Section 3, and discuss and compare the p
mance of the different methods in Section 4. Finally, we present the results of the calcul:
of the motion of an axi-symmetric sheet using the adaptive Clenshaw—Curtis quadratt

2. FORMULATIONS

In this section, we give the boundary integral equations for a three-dimensional vo
sheet; then we obtain the special form for an axi-symmetric sheet. We follow the s:
notation as in [15], but we derive the equations from a different point of view based
representing the vortex sheet by a dipole distribution. Dipole distributions have alre
been used to study the evolution of an interface between a liquid and gas [9], but ther
some minor differences when the interface is a vortex sheet in a homogeneous liquid.

Let S denote a closed vortex sheet, which divides the fluid region into two parts:
outside regiorD.. and an inside regio®_. The velocity and pressure fields ate.( p..),
respectively. The Euler equations of motion are

9 .
%Jrui-vUiJeri:o in D., )
V.ur=0 in DL, (2)
Vxus=0 inDy/S 3)

Kinematic and dynamic considerations require the following conditions on the vortex sh

n-uy=n-u_andp; = p- onsS, 4)
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wheren is the normal tdS pointing intoD... It is the jump in tangential components of the
velocity that characterizes the vortex sheet.

We introduce two surface coordinatesand 8 and express the location of the interface
asX(a, B8, t). These coordinates will be defined by the requirement that the motion of t
sheet is “Lagrangian.” By that we mean a “particle” Smabeled bye and8 moves with
the velocity

X 1
Tl u= §(u+ +u-) onS (5)
Note that the normal component of the velocity of the sheet matches that of the two liqu
as required by (4).

Due to (2), (3), there exist potential functiops such that

Ur = Vo in Di/S (6)

We introduce a dipole distribution(a, 8, t) on the sheet. According to potential theory
[16, 17], a dipole distribution generates a potential function

X) = 1 X)) - v dx’ in D @
w()——E/S/L( n) - X'(|x—x’|) +
with the properties
o xin Dy
= 8
w(X) {¢ <in D_ (8)

andu =¢, — ¢_ on S. The potentialp, vanishes at infinity, which means there is no far
field flow. If a far field flow is present, it must be added separately. In our study, we assu
there is no far field flow.

Define

1
¢=5@.+¢) onS ©)

Then from potential theory, we have

1 1
_ / / . V , - ’ ] l
d(X) 4nfsu(x)n(x) X (Ix—x’|> dx onS (10)
As a consequence, the motion of the sheet is given by
Xt(aa ﬂv t) = V¢ (11)

The evolution equation for is obtained as follows. First we determine the rate o
change of the potential along the trajectory of a surface particle moving according to |
By differentiatingg. («, 8, 1) = ¢+ (X(a, B, t), t) with respect to time, keeping the surface
coordinatesr andg fixed, we obtain

09 _ 3.

= — u-Vey. 12
P P x+ b+ 12)
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The rate of change of the potential at a fixed point in space can be obtained by integr

@,
¢

1
=——Uu-u-— c, 13
o P+ (13)

2

wherec is a constant. Upon substituting the result into (12), we obtain

ad 1
% = (u — 2ui> ‘Ut — Py +Cy. (14)

By subtracting the rate of change of the potential on either side of the sheet, we find

Gl 1 1
a—?:(u—§u+>-u+—<u—§u)-u+c+—c. (15)

The value of the definition of the velocity for the vortex sheet (5) now becomes clear si
(15) simplifies to

n=pl=o+(Cy—c)t onS (16)

Since a dipole that is constant &induces only constant potentials inside and outside, tl
contribution(c, — c_)t has no dynamical significance, and we may assamec_ =0
without loss of generality. In other words, we may considet w(«, 8) on Sto be inde-
pendent of time and given by the initial conditions.

Next, we describe how is calculated. We assume that our coordinate system has
property thatXz, X,, andn form a right-hand system with

Xg x Xq
n= BX % 17)
|X/3 X Xa|
The Greek subscripts refer to differentiation with respect to the surface coordinates.
take the gradient oy as given by (7) and “integrate by parts” over the vortex sheet. Th
we take the average of the limiting values on either side of the sheet to obtain

1 X — X'
=——yé X — ol X — ° _)da'dp. 1
! 4z S(“ﬁ a = HaXp) X <|X—x'|3>d“ dp (18)

We have introduced the notatieni = . (o’, B'), etc., for convenience. This equation is the
same as that obtained from the Biot—Savart law [15].
We obtain a different expression foiby differentiatingg (see (11)). In particular,
0 nx X Xy XN
u= —¢n + Py b + ¢p .
an [Xe x Xg] [Xo x Xpgl

(19)

The simplest way to determirtep /an is through the associated vector potenfialwhich
has the following integral representation [17],

AX) = %ﬁu(x’)n(x/) X Vy (#> dx onS (20)

X — x|
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Specifically,

z—ﬁzn-(VxA)

1
=[(A-Xo)pg — (A~ Xﬂ)a]m- (21)

Notice that once andA have been computed through (10) and (20), we differentiate the
with respect to the surface coordinates to obtain the velocity components in (19). This t
provides an alternate approach to computing the motion of the vortex sheet.

The advantage of using the surface integrals (10) and (19) is that the identities

1 , 1 1
_Ef n(x’ - VX/<W) dx’ = > (22)

1 / 1 /
Efn(x) X VX/<|X—X’|) dx' =0 (23)

may be used to reduce the singularities in their integrands [9]. For exafmptan be
rewritten as

1 1
AX) = Ef(ﬂ()(/) — NN x Vy (W) dx’ onS (24)

We will show specifically in the case of axi-symmetric flow how the singularities in th
integrands have been reduced.
For an axi-symmetric vortex sheet, we may represent the sheet location as

X=r(a,t)e + z(a, t)e, (25)

using the cylindrical coordinates, ). The motion of the sheet is assumed independent
the azimuthal anglg = 6. As noted before [15] for motion without swirl, the Biot—Savart
integral (18) becomes

' we(Z — 2)Bo(a, @)[F (K) + Bi(er, &) E(K)] do’, (26)

~ anr

1
= o f 1, Bofa o )[F (0 + Bafar o) E] d (27)
whereF (k) and E(k) are the complete elliptic integrals

/2 /2
Fk) = / (1 —Kk?co(B))Y2dB, Ek) = / (1—Kk?cog(B)Y2ds (28)
0 0

of the first and second kind respectively, with

> drr’
C(Z-Z2)2+ (417

(29)

The other quantities are

2
(Z=2)2+(r +r)HV2’

Bo(a, o) = (30)
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(Z =22 41724712
(z—2)2+ (@ —r)?
r2—r2—(zZ —2>2
(z—2)2+(r —r)?

Bi(x,0) = — (31)

Bo(o, o) = (32)

Now our notation reflects the dependency on only one surface coordihate(a’), etc.
In the alternate formulation, (19) becomes

5 1

e = <¢ara - szoz) gv (33)
. 1

z = (zbaza + 1lfTra) @ (34)

wheres? =r2 + z2 andy =rA - g is a pseudo-streamfunction. Note tahas only one
non-vanishing component. By using (22), (23), we may express the potential function
as
1 4 4 J/ / / 1
0 = 4 PO~ Bl ZF K + Cale )R] ded + 50, (39)

and the pseudo-streamfunction (obtained from (20)) as

1
V= Ef(// — ) Bo(a, &){[rgr" — z,(z = )] F (k) + Ca(er, Y E(K)} dr’,  (36)

where
 @-DlZz-2) =27+ (217,
Cr=- (Z—2)2+ (1 —r')2 (37)
_ / 9 _rly! o /! (r2 12 2 _ 12\ y!
C, = z-2)([2,(z=2) =11 1(Zz=2) +Z,(r + 1) + (r Forgr . (39)

(2=2)24(r —r")?

In order to design good numerical methods for the integrals, we must understanc
nature of the singularities in the integrands. First, we consider the asymptotic behavi
the integrands in (26), (27) when the integration variables close to the field point at.
Forr =r(a) #0, the leading order terms of the integrands are

2r (1y 2040 o
_'uiza and Miy (39)
S2(a’ — a) S2(a’ — a)
respectively. Clearly, the integrands have pole singularitiés’t- «) except right on the
axis.

In the other formulation, the integrands in (35), (36) exhibit the following asympto

behavior,

(@ —a)Inja —o| and  —2u,r, (40)

_Zabta
r
respectively. Therefore, these integrands are continuous even though they have di
tinuous derivatives. This information will prove very valuable in the design of effecti
numerical methods.
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3. NUMERICAL METHODS

We describe the numerical methods to evaluate the velocity of the vortex sheet in tt
parts: evaluation of the complete elliptic integrals of the first and second kind; adapt
numerical quadratures; and their specific application to the vortex sheet.

3.1. Evaluation of the Elliptic Integrals

In [18, p. 297], there are recursive formulae for the evaluation of Ba@lt) and E (k),

k2
F=%(1+Gl)(1+Gz)(l+Gs)---, E=F(1—5H>, (41)
where
_ Gl Gz G3
H_1+7<1+7<1+7("')"'>"'>, (42)

andG; is given by the recursion

1—,/1-G2,
Go=k G=—T—u—. (43)
144/1-G?,

This method is very robust computationally. However, the number of iterations for a giv
tolerance depends dn In general, more iterations are needed wkésclose to 1.

The other widely used technique for the computatiorEadind F is a polynomial ap-
proximation. From [18, p. 297] and [19, p. 170], we know

m ) 1 m ) 1
F=In4 + Za,—;“' + (5 + ;b,—g’) In(z> + error (k), (44)

i=1

and
m : m . 1
E=1+ZCJ§J+(Zdjgj)m({)"'e“’o&(k), (45)
j=1 j=1

where¢ =1 — k2. The polynomial coefficients are obtained via least-square fits. The siz
of the two error terms depend om For example, to guarantee errors of less thar? 10e
needm=41[19, p. 170; 20, p. 591], a very common choice. To guarantee errors of less
102, we needn = 15, which is still not excessive.

3.2. Adaptive Quadratures

Gaussian quadrature is one of the most popular methods for numerical integration
cause of its high accuracy. However, the standard Gaussian quadrature lacks the natt
progressiveness; i.e., a Gaussian rule cannot be generated by adding new points to ar
Gaussian rule, and it has to be reconstructed. This is not suitable for adaptive strategy

In [21], Kronrod shows that an-point Gaussian rule may be augmented by a further s
of n + 1 abscissae to yield a rule which integrates exactly a polynomial of degreel3
for n even and B + 2 for n odd. In the extended rule, there are exira 1 weights and
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abscissae. While the original Gaussian abscissae remain unchanged, their weights m
reset. Patterson [22] extends this technique by considering the augmentation-pbam
formula by p points. There are tables containing the standard abscissae and weights in

In this study, we use a 7- to 15-point Gauss—Kronrod quadrature. We bisect the integr:
intervals and estimate the error of the numerical integration over each interval by measi
the difference between the 7-point Gauss quadrature and the 15-point Kronrod rul
globally adaptive strategy is to bisect the interval with the largest error estimate until
error is less than a prescribed tolerance. We used the freely available software pac
Quadpack [23] which implements this strategy.

Clenshaw—Curtis quadrature [24] is based on the expansion of the integrand as a
of Chebyshev polynomials. The method is naturally adaptive since it adjusts the numb
termstoreach aspecified level of accuracy. For integrands with weight functions which ¢
a slow rate of convergence, Piessens and Brander [25] developed a modified Clens
Curtis quadrature through the computation of modified Chebyshev moments. In this st
we are interested in the computation of the integral with the following weight [23],

1
/ f () In(a’) do’. (46)
0

This weight function is one of the choices available in Quadpack which contains the softv
necessary to perform the modified Clenshaw—Curtis quadrature.

3.3. Application to the Dipole Distribution

A convenient choice for the surface coordinate is to use the angle subtended at the c
of the enclosed region by the axis of symmetry and the vector to a field point on the in
location of the surface. For the studies reported in this paper, the initial surface is a sf
ande is the polar angle measured from the bottom pole. Thas0 will mark the bottom
pole, whilea = 7 will mark its top.

We approximate the closed surface by a set of points along the contour inzhmerid-
ional plane(ri, z) = (r (o), z(ej)) fori=1,..., N, whereg; =iz /(N — 1). Equations
(33), (34) are then enforced at these points. This first requires the computatipmiod
¥i. Although the integrands in (35), (36) are continuous wiene’, their derivatives are
not. So we split the integrals into two parts: one integrated fromdj,tand the other one
from ; to 7. Then we apply the adaptive Gauss—Kronrod quadrature to each of the
integrals. Because the Gauss—Kronrod quadrature is a open quadrature, we do not n
evaluate the integrands at the integration limits. In particular, we do not need to worry al
the indeterminate form of the integrand wheg- o’

To evaluate the integrands, we also need values for the elliptic integrals and derivativ
r andz. The elliptic integrals are determined through the recursion (41)—(43). Dependin
the accuracy we require for the integration, we set a tolerance for the recursion for the ell
integrals. To determine approximations for the derivativesaridz, we expand them in a
truncated Fourier cosine series: The Fourier coefficients can be determined through th
Fourier transform inO(N In N) operations using the values ofandz at the collocation
points. We then differentiate the series analytically and use the fast Fourier transform
the modified coefficients to obtain the derivatives at the collocation points. Similarly we
approximate the derivatives g¢fand+, which then give us the velocities of the collocatior
points on the sheet. To obtain values of quantities at points other than the collocation pc
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we use quintic splines. Because of the symmetries in a closed, axi-symmetric surface
endpoint conditions for the splines are easily specified. We call this procedure Method

In Method 11, we replace the elliptic integral of the first and second kind by the appro»
mations (44), (45). The two integrals (35), (36) then take the form

/ f (o, ') do’ + / O1(o, &) In(ax — &) de’ + / O(a, o) In(a — ') da’,  (47)
0 0 [

wheref, g;, andg, are smooth functions of anda’. We use the Gauss—Kronrod quadrature
on the first integral in (47), and the modified Clenshaw-Curtis quadrature on the sec
and third integrals in (47), respectively. As in Method I, derivatives are obtained throu
the use of a Fourier cosine series, and interpolation is conducted with quintic splines.

Once the velocity components have been determined by Method | or Il, we advance
location of the vortex sheet by applying a fourth-order Adams—Moulton predictor—correc
on (33), (34). Starting values for the predictor—corrector are computed by a standard foL
order Runge—Kutta method.

4. NUMERICAL TESTS OF METHODS

Ouir first series of tests are performed without using adaptive quadrature. This provi
us with data by which we can compare the effectiveness of adaptive quadrature. Wha
do explore in these tests is whether different forms for the integrals lead to better numer
evaluation. At issue is the treatment of the singular nature of the integrands.

In Method A, we apply the six-point Gaussian quadrature in each subintesva ;1)
of the Biot—Savart integrals (26), (27). This may be viewed as a reasonably accurate me
applied in a straightforward way without consideration of the singular nature of the in
grand. In Method B, we use the point vortex method, as implemented in [10] with t
axi-symmetric Van der Vooren correction. This method results from expressing the ir
grand as a singular part, treated analytically, and a remainder, treated numerically by
midpoint rule. In Method C, we apply the six-point Gaussian quadrature in each subintel
(aj, aj+1) of the integrals (35, 36). In all three cases, we use a Fourier series to determn
derivatives, and interpolation is performed through the use of quintic splines. The t
elliptic integrals are computed through the recursive formulae (41)—(43).

We use the instantaneous velocity field of a uniform flow past a sphere as atest calcula
The parameterization of the surface of the sphere and the dipole distribution is

r () = sin(a) Z(a) = — coqw) u(a) = codw), (48)

wherea € [0, ]. The velocities of the vortex sheet are

in(2a 5 1
- S'”(4 ) = (— +3 008(2a)>- (49)

" 12

We measure the error as the magnitude of the difference between the exact velocity
and the numerically calculated one. In Fig. 1, we plot the errors as function$asfthe
three different methods whed = 65. Even though Method A uses a much higher orde
quadrature, its errors are about a factor 100 worse than Method B. Clearly, the effor
capture the singular nature of the integrand has paid off. The next step then woulc
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Logjo{error)
i

-12.0 L

o

FIG. 1. Errors as functions ok for three non-adaptive methods. Dotted curve: Method A; dashed cun
Method B; solid curve: Method C.

to improve the accuracy of the integration by using a high order Gaussian quadra
Unfortunately, the cancellation function used to remove the singularity in the integran
quite complicated and certainly increases the cost of the numerical integration. On the «
hand, reducing the singularity in the integrals of the dipole distribution as in Method C
very easy and incurs negligible cost. Method C gives much better results than Methc
In summary, it is important to treat the singular nature of the integrands as explicitly
possible if high order numerical quadrature is to be used to gain high accuracy, anc
dipole distribution offers a substantial advantage in that regard.

All three methods lose accuracy wheiis near either pole. The cause of the difficulty i
the particular behavior of the integrand for a field point near the axis of symmetry [1, !
The error profile has a boundary layer inside of which the error only decreases line
with the spacing between the collocation points [14]. We confirm this behavior in Fig
which shows the variation of the maximum error (which occurs at or near the poles) \
the number of collocation points. The decrease is only linear. By linear extrapolation,
error will be about 107 and 101° with N = 220 for Methods B and C, respectively. The
cost is prohibitive to achieve the levels of accuracy required to study singularity format
on vortex sheets.

There is an interesting feature of the error in Method C, namely, the appearance
sawtooth pattern. The error profiles in the potentiaind the streamfunctiof are smooth
exceptatthe poles, where the integrands are free of any singularities and Gaussian quac
produces errors that are substantially reduced. The jump in error at the poles has animp
consequence on the error in the velocities, which are obtained through differentiatio
¢ andy. Since numerical differentiation through a truncated Fourier series of the g¢xa
andyr produces the exact result, the error in the velocities is just the derivative of the er
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Log,e(error)

-10.0 | | |
2.0 4.0 6.0 8.0 19.0

Log,(N—1)

FIG. 2. Log-log plot of the maximum error of each method as a functioN ofx) Method A; (0) Method B;
(x) Method C.

in ¢ andyr. Using numerical differentiation through a truncated Fourier series on a jun
discontinuity will produce the type of oscillations seen in Method C. Although the erro
are quite small, the presence of oscillations may lead to instabilities in a time-depenc
calculation.

At this point, the obvious way forward is to use adaptive quadrature, hence Methods |
1. We apply Methods | and Il to the same test case as above. For the results reported her
make sure that the errors in the computation of the elliptic integrals are less:thah014.

For the adaptive Gauss—Kronrod quadrature (Method A), we use the recursive formt
(41)—(43) until the difference in the iterates is less thanFor the adaptive Clenshaw—
Curtis quadrature (Method B), we find that=8 ensures the polynomial approximations
to the elliptic functions are accurate to at least Also, we set a tolerance requirement
€, for the calculation of the various integrals. This tolerance is simply passed throug
subroutine call to the software package Quadpack. Figure 3 presents the errors of the
adaptive methods as a function®mfvhenN = 65 ande, = 1072, In contrast to the non-
adaptive methods, the errors are nearly uniform forallhe errors are very close to the
specified tolerance for the calculation of the integrals. Don't forgetdhatdy must be
differentiated numerically to determine the velocities on the vortex sheet, and there will
some error incurred as a result.

In order to compare the cost between these two methods, we count the number of integ
evaluations for each method, which is the dominant cost in computing the integrals.
Fig. 4, we plot the average number of integrand evaluations per collocation point a
function of the error. We show the results for bddh= 65 andN = 129. There are several
points that these results illustrate. First, consistent with the results of the previous tes
requires many quadrature points to obtain even moderate accuracy. By using an ada
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Logo(error)
I
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Log,(Num of Integrand Evaluations)
NeoJ
=2
T
1

7.0 1 | | | |
-14.0@ -12.0 -19.0 -8.0 -6.0 -4.0 -2.0

Log,q(error)

FIG. 4. Log-log plot of the average number of integrands evaluation per collocation point as functions of
errors. (x) Method | withN = 65; (x) Method | with N = 129; (o) Method Il withN = 65; (+) Method Il with
N =129.
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quadrature we insert the quadrature points through interpolation just where they are nee
Without adaption, we would have to introduce many more collocation points, driving up t
cost of numerical integration exorbitantly. Note furthermore that the number of integra
evaluations is relatively insensitive to the number of collocation points. This means t
the errors in using\ =65 andN = 129 points to represent the interface are much smalle
than the errors caused by the numerical integration. In other words, there is no need to |
more collocation points. Finally, we note that Method Il is more efficient than Method
It was unclear to us prior to our testing which method would be more efficient. It seel
that the use of a special quadrature to treat the logarithmic part of the integrand is v
worth the effort in separating the integrand into two parts. Once again, explicit treatm
of singularities and derivative singularities in the integrand pays off.

5. EVOLUTION OF THE VORTEX SHEET

We follow previous work [13, 14] in using (48) as the initial condition. This initial condi-
tion corresponds to a uniform potential flow past a solid sphere which is instantaneously
solved at = 0. The vortex sheet at the boundary of the sphere is then allowed toevolve fre

Since vortex sheet motion is ill-posed, it is necessary to control the growth of rour
off errors to avoid rapid contamination of the profile long before singularity formation. |
studies of two-dimensional motion of vortex sheets, a Fourier filter is frequently used [2
the reliability of the filter has been checked with arbitrary precision calculations [27].
each time step, we calculate the Fourier spectrum of the location of the vortex sheet an
all amplitudes below a filter levelk to zero.

In Fig. 5, the profiles of the axi-symmetric vortex sheet are shown at four different tim
with the last time very close to the time of formation of a curvature singularity. The resu
are obtained by Method Il using: = ¢, =10~'2, N =257, and the time stefit = 0.001.
We establish the accuracy in our results by a resolution study. First, we consider the influe
of the number of collocation pointd which represent the interface. We tréat= 257 as
“exact” and use the maximal difference in the sheet location between this “exact” solut
and other smalleN as an estimate of the error. We plot the errorifoe 9, 17, 33, 65, 129
in Fig. 6. Here, the time step ist =0.001. There are three major sources of error due t
the spatial discretization: there is &(N~°) error caused by the use of quintic splines for
interpolation; there is a® (exp(—cN)) error in determining the derivatives ¢fandy by
their Fourier seriest(is some constant); and there is an error produced by the evaluation
the integrals. In general, if the errors in evaluating the integrals are small enough comp:
with the other two errors, the dominant error should®eN—®). Specifically, the error
should decrease by a factor of 64 wheneMeis doubled. This is evident in Fig. 6. The
errors uniformly decrease by a factor close to 64 as the number of collocation point
increased fromN =9 to N =65. ForN =65 andN = 129, the errors are initially limited
by the choices| =er =107, but as the errors become larger thamr*#Qthe accuracy
for N =129 is better than foN = 65. Despite appearances, the curves are not crossing, |
merely touch one another.

Next we consider the errors caused by the temporal discretization. Similar to the spz
resolution study, we take the results fat = 0.00025 as “exact” and use the maximal
difference in the sheet location with the results for lasyeras estimates of the errors. Here,
we pick N =129. Since the Adams—Moulton predictor—corrector method has an error
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FIG.6. The maximal magnitude of the difference between the solutioNfer257 and smalleN as functions
of time.
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FIG. 7. The maximal magnitude of the difference between the solutiomfos 0.00025 and for largeAt
as functions of time.

O((At)%), we should obtain an improvement in accuracy of a factor of 16 whenevisr
halved. In Fig. 7, the errors are plotted as functions of time for various

Except at very early times, the errors decrease uniformly with a factor of aboutAli6 as
decreases to 0.0025. The apparent crossing of the curves f610.04 andAt =0.02 is
illusory: the curves merely touch. For smaller values\ofthe errors become smaller than
the effects of the spectral filtésr = 10-12), and no further improvement is possible without
changing the various tolerance requirements and the filter level. Consequénty).001
gives the best accuracy for our choice of numerical parameters. Most important is the
that no smoothing other than the spectral filter to control round-off errors is needed
numerical stability. Highly accurate evaluations of the integrals give numerically stal
methods, an observation noted in two-dimensional motion [28, 29].

We turn now to a comparison of the performances of Method | and Method Il. From t
resolution study, we find thaltl =129 andAt =0.001 gives levels of accuracy close to
€; = 1072, so we choose thisl andAt for the comparison of Method | and Method II. We
compute solutions for both methods with three different choices ef10~8, 101, 10-1?

(e =¢p). In Fig. 8, we show the maximal difference in the sheet location of the tw
solutions. As seen in the plot, the differences are comparable with the sizeabkarly
times and increase slightly as time advances. The general tendency of the curves is sil
to those shown in the resolution study for Method Il. We conclude that the two methc
are comparable in terms of achieving accuracy. However, Method Il is superior in term:s
efficiency. This is evident in Table 1, where the computing time for both methods is list
for differente,. Roughly speaking, Method Il is about four times faster than Method
The average number of function evaluations per collocation point rises by about a fa
of five for both methods, with Method Il remaining about a factor of four less througho



ADAPTIVE QUADRATURE FOR VORTEX SHEETS 65

Log,,(difference)
I
@
(]

Time

FIG. 8. The maximal magnitude of the difference between the solutions computed by Method | and Met
Il with different choices ot, : dotted curvee, = 10~%; dashed curves, = 10-; solid curve:e, = 1072

the evolution. Even so, both methods are very effective considering the accuracy
achieve.

We conclude this section by providing some evidence of the formation of a curvai
singularity in the vortex sheet. In Fig. 9 we show profiles of the mean curvature

loZoo — Zolaa Zy
——— + — 50
a2 - (50)

at times close to the formation of a curvature singularity. Note that the curvature chat
rapidly near where the singularity forms, jumping between a high spike and a low dip.
jump grows in magnitude as the singularity forms even though the location of the sl
(see Fig. 5) shows little evidence of the singularity. This behavior is quite typical of t
seen in singularity formation in two dimensional motion of vortex sheets [7]. It is also 1
reason that the solutions gradually lose their accuracy as time approaches the singt
time, as illustrated in Fig. 7. Depending on the number of collocation points, thereis a |
to how close to the singularity time the calculation can approach before the code termin
The appearance of oscillations in the curvature-atl.08 and 1.095 is also indicative of
insufficient collocation points to resolve the curvature adequately at these times.

TABLE 1
Running Time on SGI Indigo2 Impact 10000
€ 10°8 107 1022
Method | (min): 73 115 160

Method Il (min): 19 26 35
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FIG. 9. Profiles of the mean curvaturetat 1 +i x 0.02(i =1, 4) andt = 1.095.

The standard approach used to study the details of singularity formation in two-dim
sional vortex sheets is based on fitting the Fourier spectrum of the sheet location to a sp
form. If branch point singularities are present in the complgane of form

r)~ad®(a@—0+i8)"""* +ae'®(@+6+i8)""", (51)
then the Fourier coefficients off say, take the form

f ~ oL exp(sin(kd + A In k + ¢) (52)
for k>>> 0. While this is not the place to provide a detailed derivation or justification fc
these theoretical results, a few words of explanation are in order. The two singulari
are placed symmetrical abott= 0 with the appropriate form to ensure thais an even
function whenu is real. Because the singularities in (51) are below the real axisthiey
affect only the positive partk > 0) of the Fourier spectrum. There will be another pair
of singularities above the real axis to ensure tha real on the real axis, and this pair
will affect the negative part of the spectrum. The parameders 6, 8, v, and can be
functions of time. In particular, i§ vanishes in time then the singularities reach the ree
axis and become physically relevant. The objective of a form-fit to the spectrum ther
to identify the presence of such singularities in the complex plane and to verify that tt
approach the real axis. More details are available in [8, 30] for the two-dimensional ca:
Since (52) is an asymptotic form, the commonly accepted procedure [7, 8, 13, 30]
fitting the numerically calculated spectrum is to take six sequential Fourier coefficiel
and determine local values for the parameters in (52). The next six Fourier coeffici
are then used to get new values of the parameters, and the parameters are then plot



ADAPTIVE QUADRATURE FOR VORTEX SHEETS 67

2 64 128 a 64 128

FIG. 10. Parameters in the form-fit of the Fourier spectrunt 2t1.025: dashed curve:;; = 1012 dotted
curve:e; = 10718 solid curvee; =102,

functions of the locak values. Ak increases, the parametersin (52) should settle to const
values.

We show the results of the form-fit in Fig. 10 for three different levels oft time
t = 1.025. To obtain the results with = ex = 10716, 10720, we were forced to use quadru-
ple (128 bits) precision. Further, even interpolation with quintic splines proved too inac
rate, so we switched to using a truncated Fourier series for interpolation, thus removin
source of theD(h®) errors in the numerical integrations. The additional cost for spect
interpolation is small compared to the cost of the numerical integration and is also p:
offset by a reduced number of function evaluations per collocation point.

The pattern in the results may be understood as follows. Decreasimgroves accuracy,
while decreasingr allows us to see much more of the Fourier spectrumeFer10-1?, the
curves of the parameters in the form-fit do not approach constants excérfdmperhaps
8, the two parameters that determine the location of the singularity i-t@mplex plane.
To determine the power of the singularity, it is necessary to use much smaller value
€. The parameters and show a clear approach to values consistent with the theoreti
predictionv = 1.5 andx = 0 whene; = 10-2°. We would not be able to confirm theoretical
predictions if we did not use such a small value:pfNote that for larger values &f, the
form-fits deteriorate because of truncation errors in the spectrum and the influence ¢
filter. This contamination is delayed for the smaller values, dinde.
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Now that we have adequate accuracy to study the presence of singularitiesdn the
complex plane, we can study the nature of their origin and how they approach the real
Details will be presented in [31].

6. CONCLUSIONS

Many guadrature points are needed to evaluate boundary integrals accurately for the
symmetric motion of a vortex sheet. If a fixed quadrature rule is used, this also requires ir
collocation points, driving the cost to prohibitive levels. By using adaptive quadratures,
number of quadrature points can be made independent of the number of collocation po
leading to more efficient techniques for the numerical study of vortex sheet motion.
particular, we can ensure sufficient accuracy to locate and confirm the nature of singular
in thex-complex plane. These singularities, when they reach thexraais, are the cause
of curvature singularities in the vortex sheet.

We anticipate similar results for boundary integral methods to track free surface mot
in axi-symmetric geometry.
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